
SUMMARY
We present mathematical and computational models, 
as well as statistical and bioinformatics approaches 
for a better understanding of cancer development 
on different scales at the example of Lynch syndrome, 
the most common inherited cancer syndrome.
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Mathematically modeling colorectal cancer development [1]

MODELING WORKFLOW 
MEDICAL KNOWLEDGE

PARAMETER VALUES

GRAPH REPRESENTATION

ADJACENCY MATRICES

LINEAR ODE SOLUTION

▸ define pathways of carcinogenesis 
▸ identify driver genes
▸ explore mutational dependencies

▸ define gene-dependent point mutation and LOH event rates
▸ determine possible fitness changes and fixation affinities

▸ build gene mutation graphs for each driver gene
▸ build graphs for mutational dependencies

▸ derive adjacency matrices corresponding to graphs 
using the Kronecker structure

▸ set initial condition
▸ solve linear ODE explicitly using the matrix exponential
▸ extract mutational status of interest from the solution vector
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Computational cell-based model of intra-crypt dynamics [2]
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From tissue structure to computational grid Visual evaluation

Cellular rules implemented in the model Quantitative analysis
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Modeling cumulative cancer risk [7] 
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Novel statistical derivation: 
Nelson-Aalen estimates 
based on a Poisson distribution
with 95% confidence intervals 
➝ natural choice for prospective 
cancer incidence data
(previously: normal distribution)

Cost-benefit analysis of BRAF mutation diagnostic testing [3]

non-informative
(BRAF-wild type)

BRAF mutation testing as filter
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germline mutation analysis
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• High risk of missing LS
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sporadicLS

BRAF mutation testing as filter
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• Low risk of missing LS
• Cost reduction
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ALL MSI CRCS ≥ 60 YEARSProbabilistic data analysis
Analyze data from previous 
publications and population-based 
studies to calculate the risk of 
erroneously excluding hereditary 
cases from germline mutation 
analysis using BRAF mutation 
testing as a filter

GENETICS

CODING 
SEQUENCE 

CHROMOSOME
SEQUENCE

GENE

× ×

point mutation
LOH event

irrelevant or relevant

×

×

× ××

Quantifying immuno-editing during cancer development [4-6]

mutated microsatellites

FSP neoantigen

MSI cancer cellcell nucleus

YCD8+ T cell

HLA class I

Y CD8+ T cell

loss of HLA class I

B2M mutationB2M wild-type

MSI cancer cell 
cannot be detected by T cell

mutated microsatellites

FSP neoantigen

MSI cancer cellcell nucleus

YCD8+ T cell

HLA class I

Y CD8+ T cell

loss of HLA class I

B2M mutationB2M wild-type

MSI cancer cell 
cannot be detected by T cell

Bioinformatics approach
With a novel algorithm, called ReFrame, identify frameshift mutations 
that are shared by most microsatellite unstable tumors and discover a 
negative correlation between frameshift mutation frequencies and the 
predicted immunogenicity of the resulting frameshift peptides
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Parametrizing mutation rates in a gene-dependent way [1,2]

Rate of a relevant point mutation per cell division for a specific gene in a cell:

Rate of a relevant loss of heterozygosity (LOH) event per cell division for a specific gene:


